
www.manaraa.com

Design, Implementation, and Evaluation of A Repairable
Database Management System

Tzi-cker Chiueh Dhruv Pilania

Rether Networks Inc.
99 Mark Tree Road, Suite 301, Centereach, NY 11720

{chiueh@rether.com

Abstract

Although conventional database management sys-
tems are designed to tolerate hardware and to a
lesser extent even software errors, they cannot
protect themselves against syntactically correct
and semantically damaging transactions, which
could arise because of malicious attacks or honest
mistakes. The lack of fast post-intrusion or post-
error damage repair in modern DBMSs results in
a longer Mean Time to Repair (MTTR) and some-
times permanent data loss that could have been
saved by more intelligent repair mechanisms. In
this paper, we describe the design and implemen-
tation ofPhoenix- a system that significantly im-
proves the efficiency and precision of a database
damage repair process after an intrusion or oper-
ator error and thus, increases the overall database
system availability. The two key ideas underly-
ing Phoenixare (1) maintaining persistent inter-
transaction dependency information at run time
to allow selective undo of database transactions
that are considered “infected” by the intrusion or
error in question and (2) exploiting information
present in standard database logs for fast selec-
tive undo. Performance measurements on a fully
operationalPhoenixprototype, which is based on
the PostgreSQL DBMS, demonstrate thatPhoenix
incurs a response time and a throughput penalty
of less than 5% and 8%, respectively, under the
TPC-C benchmark, but it can speed up the post-
intrusion database repair process by at least an or-
der of magnitude when compared with a manual
repair process.

1 Introduction

Database management systems are an indispensable com-
ponent of modern Internet services and are typically re-
sponsible for storing and providing access to mission-
critical data. As DBMSs become more accessible over the

network, they are also more susceptible to malicious at-
tacks from remote sites, e.g., SQL Slammer [22]. On the
other hand, because DBMS holds information that is criti-
cal to the continuous functioning of Internet services, high
DBMS availability is absolutely essential. Although the
original motivation for this work is survivability, i.e., ability
to quickly recover from malicious security break-ins, the
same mechanism is equally effective for repairing database
damage caused by human errors. However, for the rest of
this paper, we will focus only on intrusion damage.

There is a fundamental difference between a security
breach and a hardware failure: Unlike a hardware failure, a
security breach cannot always be detected immediately. the
interval between when an intrusion takes place Thedetec-
tion windowis the interval between when an intrusion takes
place and when it is detected. Data entered during the de-
tection window and not infected by the intrusion should not
be affected by the post-intrusion repair process. We use the
word “repair” rather than “recover” to emphasize the ad-
ditional, often manual, efforts required to preserve useful
data in the process of restoring the database back to normal
operation.

Today, system administrators have two choices when it
comes to repairing a database corrupted by an intrusion.
First, they can restore the entire database back to the state
before the intrusion took place. This approach is simple
and fast, but could lead to loss of non-infected data cre-
ated during the detection window. Alternatively, they can
attempt to preserve the non-infected data as much as possi-
ble by manually removing all the side effects of the intru-
sion. However, this approach is labor-intensive, and thus
time-consuming and error-prone. A repairable DBMS can
minimize the post-intrusion repair time while preserving as
much non-infected data as possible, thus achieving the best
of both worlds.

Availability is defined as the ratio between mean time
to failure (MTTF) and the sum of MTTF and mean time to
repair (MTTR) (availability = MTTF/MTTR), where
failure in this case corresponds to a successful attack. To
maximize the availability metric, one can either increase

www.manaraa.com

the MTTF to infinity or decrease the MTTR to zero. In
contrast to most traditional database security mechanisms,
which aim at maximizing the MTTF, the approach de-
scribed in this paper attempts to minimize the MTTR, or
fast repair of database damage left by security breaches,
thus improving a DBMS’s dependability by increasing it’s
availability.

There are two justifications for the MTTR minimization
approach toward highly available DBMS. First, the effec-
tiveness of existing database security mechanisms, such as
integrity constraints, embedded rules in transactions, SQL
and OS-based access control etc., is reaching a plateau.
Consequently, it is becoming more and more difficult and
expensive to further improve the MTTF. Comparatively, the
MTTR minimization approach receives relatively less at-
tention. Second, it is generally believed that there is no
such thing as an unbreakable system. For example, attacks
based on social engineering, password stealing, or insider
information, are almost impossible to prevent. When these
attacks occur, the best one can hope for is to restore the
system back to normal operation as quickly as possible.

After an intrusion, currently the only option that
database administrators have is to manually determine the
“damage perimeter” and erase all the identified corrupted
data. Unfortunately, given the highly complex interactions
among database transactions, especially in a high-volume
E-service site, it is next to impossible to determine how the
transactions issued by intruders impact the database before
the intrusion is detected. As a result, a common approach
that database administrators take to repair intrusion dam-
age is to roll the database back to where it was before the
start of the first intruder transaction. While this approach is
conceptually simple and does eliminate all damage caused
by malicious transactions, it also throws away all the useful
work produced between the occurrence of an attack and its
detection.

A more desirable alternative is to determine the exact
extent of intrusion damage, and undo only those transac-
tions that are considered corrupted by the attack.Phoenix
takes exactly this approach both to increase the amount of
useful work preserved across intrusion and to speed up the
repair process. More specifically,Phoenixtracks and main-
tains inter-transaction dependency at run time to determine
the exact extent of damage caused by an intrusion, and ex-
ploits standard database logs to support single-assignment
update semantics and thus the ability to roll back commit-
ted transactions.

We have built a fully operationalPhoenix prototype
based on PostgreSQL, which was chosen becausePhoenix
requires modifications to the DBMS kernel. PostgreSQL
is currently the most advanced open-source DBMS with
transaction support and is now a part of Red Hat’s Linux
distribution. It supports all the features of a fully func-
tional commercial DBMS including ACID guarantees for
transactions, write ahead logging, complex object types,

ODBC/JDBC interfaces, etc.
The rest of this paper is organized as follows. In Sec-

tion 2 we review previous research in the area of intrusion-
resilient data systems in general, and intrusion-resilient
DBMS in particular. Section 3 describes the system archi-
tecture ofPhoenix. Section 4 presents the software archi-
tecture and implementation details of the currentPhoenix
prototype. Section 5 provides the results of a detailed per-
formance study of thePhoenixprototype based on the TPC-
C workload. Section 6 summarizes this paper with its main
contributions and an outline of on-going work.

2 Related Work

Oracle 9i supports a feature called Flashback query [1] that
allows end users to post a query against a database state
at a particular point in time in the past. This feature is
built upon the WAL log and can be used for building self-
correcting applications that need to undo effects of cer-
tain transactions without point-in-time rollback. The Ingres
database system from Computer Associates Inc. supports
point-in-time rollback and roll-forward using journal-based
recovery [2]. In this approach, journal files containing
changes to database tables are maintained and analyzed to
reconstruct the database state at the time point in question.
Although these two commercial database features provide
nice “history query” capabilities, they themselves do not
allow intrusion tolerance for two reasons. First, they do
not supportselectiveundo of database transactions that take
place between the current time and the time point of inter-
est. Second, they do not solve the problem of determining
which transactions to undo, or the extent of database dam-
age due to an attack.

There have been several research projects on post-
intrusion database damage repair. Ammann et al. [4] pro-
posed a transaction model and associated protocols that
allow normal transactions to proceed against a database
whose portions are known to be damaged as a result of
an intrusion. The proposal is largely a theoretical exercise
without detailed system-level considerations. Peng Liu et
al. [5] [6] described a concrete intrusion tolerant database
system called ODAM, which can continue its transaction
processing service even in the presence of active attacks.
ODAM logs database updates in terms of SQL-based trans-
actions. Instead of keeping track of inter-transaction depen-
dencies at run time asPhoenixdoes, ODAM identifies them
at the repair time by analyzing the SQL log. To support
continuous operation, ODAM incorporated several concur-
rency control schemes to detect, assess and repair damaged
databases on the fly without completely stopping the pro-
cessing of new incoming transactions. However, during the
repair time, the effective throughput of the DBMS is de-
graded. ODAM requires both a write log and a read log.
Although a write log is quite common in modern DBMS,
maintaining a read log poses a serious performance over-

www.manaraa.com

head and therefore is not supported in existing DBMS.
ODAM obtains transaction read information by using pre-
defined templates of reads for each transaction. These read
templates are instantiated at the time a transaction runs by
parsing the SQL statements associated with the transaction.
In contrast,Phoenixmaintains an inter-transaction depen-
dency graph and thus does not need any read log for re-
covery purpose. Consequently, our approach does not re-
quire any prior knowledge of the transactions and is more
accurate. At present,Phoenixonly supports off-line post-
intrusion database repair, but can be extended to support
on-the-fly database repair with proper concurrency control
as in ODAM.

The Repairable File System (RFS) project [14] aims to
improve the speed and precision of post-intrusion damage
repair for NFS servers. Traditionally, file system recov-
ery uses signatures generated by systems such as Tripwire
[17] to determine corrupted system files or complete point
in time restoration from backups. Instead, RFS maintains
file system operation logs and carries out dependency anal-
ysis to provide fast and accurate repair of damage caused
by NFS operations issued by attackers.Phoenixapplies
the same set of principles used in RFS to build intrusion-
resilient database systems.

Finally, it should be noted thatPhoenixis different from
standard database back-up systems in that it backs up ev-
ery database update and keeps track of inter-transaction
dependencies at run time.Phoenixis also different from
data mirroring/replication systems because the latter sim-
ply make the same mistake twice in the presence of intru-
sion or errors, and do nothing to improve the accuracy or
performance of post-intrusion damage repair.

The Recovery Oriented Computing (ROC) project
[18] [19] advocates a radical shift from a performance-
dominated research focus to the focus of improving sys-
tem availability by reducing MTTR and eventually the
overall system ownership cost. One of the applications
that is currently being pursued, an undoable email system
[18], shares a similar approach withPhoenix, but focuses
specifically on email message protection rather than gen-
eral databases.

The Dali system [21] from Bell Labs took a similar
inter-transaction dependency tracking approach to elimi-
nate transactions that have been corrupted by an application
which runs in the same address space as the database. The
Dali approach keeps track of the read-dependency set of
each transaction and is mainly for main memory database
management.

3 The Phoenix Approach

The ultimate goal of thePhoenixproject is to develop a
modular system that can be plugged into an existing DBMS
and makes it intrusion-resilient without any modification
to the host DBMS. Whether this goal is attainable depends

on the availability and flexibility of the “hooks” existing
DBMSs support. Fundamentally, to convert a standard
DBMS into one that is intrusion-resilient, one needs to add
to the DBMS the following capabilities:

• The ability to maintain thebefore imagesof all
database updates so that each database update is un-
doable, and

• The ability to keep track of the dependencies among
transactions, so that it is possible to determine pre-
cisely the extent of database damage induced by one
or a set of attack transactions.

3.1 Maintaining Before Image

Every modern DBMS supports database transactions, and
maintains some sort of before image on disk for every
database update, at least after the associated transaction
is committed. In write-ahead logging, for example, the
undo/redo log records associated with a transaction must
be written to disk before the transaction can be committed.
TheoreticallyPhoenixcan use these “undo” log records
as before images in the damage repair process. However,
there are two issues that make the picture less than ideal.
First, undo log records are usually kept for a shorter period
of time thanPhoenixneeds. For example, if theprotection
windowof Phoenix, which is the maximal interval between
an attack and its detection that the system allows and still
is able to support lossless repair, is set to one month, undo
log records need to be kept for one month. Although these
undo records could be kept in the archive log to survive
disk failure, increasing use of disk mirroring and replica-
tion renders archive logs less and less popular in practice.

The second issue is that there is no standardized pro-
gramming interface to access the transaction log and to
apply the log records therein to undo already committed
transactions. One possibility is to automatically derive a
compensating transaction for a transaction that needs to
be undone, and submit the compensating transaction to the
DBMS through its standard access interface. This way no
modification to the DBMS is required to support transac-
tion rollback.

3.2 Tracking Inter-Transaction Dependency

Today, to repair intrusion damage on a database, admin-
istrators have no choice but tomanuallygo through the
set of transactions that take place between when an attack
occurs and when it is detected, if they need to eliminate
the effects of those and only those transactions that are af-
fected by the attack. This is obviously a labor-intensive,
error-prone, and time-consuming process, and is also why
MTTR for database damage cannot be significantly re-
duced. Phoenixaddresses this problem by keeping track
of inter-transaction dependency at run time; therefore at re-
pair time,Phoenixcan accurately and automatically deter-

www.manaraa.com

mine the set of transactions that are potentially corrupted
by the intruder’s transaction(s). Presented with these trans-
actions identified byPhoenix, database administrators can
either choose to refine them further or to rollback their ef-
fects directly.

The notion of inter-transaction dependency is far from
obvious. The most sophisticated definition of transactional
dependency calls for the semantic analysis of the appli-
cations in which transactions are embedded. For exam-
ple, suppose Transaction A is embedded in Application 1
and Transaction B is embedded in Application 2. At run
time Transaction A retrieves a record that is last updated
by Transaction B. In this case, although there is an inter-
transaction dependency between Transaction A and Trans-
action B, there may not be a real dependency between Ap-
plication 1 and Application 2, because Application 1 never
uses the record that Transaction A retrieves in its applica-
tion logic. Therefore, this inter-transaction dependency can
be safely ignored.

Conversely, even when two transactions do not access
common records, it does not necessarily mean that there
is no dependency between them, because it is possible for
an application to access Record X through Transaction A,
compute a value from Record X, and use the resulting value
to update Record Y through Transaction B. In this case, al-
though Transaction A and B do not share any data, there is
an implicit inter-transaction dependency between Transac-
tion A and Transaction B through the common embedding
application. In the most extreme case, Transaction A is em-
bedded in a different application than Transactions B, but
these two embedding applications have data dependencies
through inter-process communication.

The inter-transaction dependency that the current
Phoenixprototype supports is based strictly on read-write
relationships between transactions: There is a dependency
from Transaction A to Transaction B if Transaction B reads
a data item last updated by Transaction A. The assumption
underlying this definition is that reading a particular item
changes the state of a transaction and affects its execution
results.

To compute inter-transaction dependencies, one can
maintain for each transaction a read/write log, which
records the set of records that are read and written by that
transaction at run time, and perform dependency analysis at
repair time. While conceptually simple, it has a major flaw:
most DBMSs do not support read logs because keeping
read logs incurs serious performance penalty. Recognizing
this deficiency,Phoenixchose to build up inter-transaction
dependency directly at run time, thus eliminating the need
of read logging completely.

For each data item,Phoenixmaintains an additional
field that records the last transaction that updates the data
item. Let’s call this field of data item X asPrev(x). When X
is read by Transaction T, thenPhoenixestablishes a depen-
dency relationship between T and the transaction indicated

in Prev(x). This algorithm is illustrated in Figure 1. For
example, after the first transaction, Prev(1) = 0; once the
second transaction completes, transaction 1 is dependent
on transaction 0, as shown in the dependency graph that
Phoenixbuilds on the fly.

Because inter-transaction dependencies need to survive
intrusion, they should be kept persistent and preferably in a
separate disk than other database disks. Specifically the de-
pendencies associated with a transaction should be written
to disk when the transaction commits.

Concurrent execution of transactions complicates the
maintenance of inter-transaction dependency. First, if T
just updates x, changingPrev(x) to T should happen be-
fore another transaction reads x.Prev(x)update should be
atomic with respect to the actual update of x. Secondly, if
a transaction T writes x and later aborts,Prev(x)should be
reset to its previous value before T’s update. This can be
accomplished by consideringPrev(x) information to be a
part of the before image of an item x and then carrying out
necessary changes at transaction rollback time. Thirdly, if
transactions against a database system are allowed to ex-
ecute atread uncommittedisolation level, cascaded aborts
are possible due to dirty reads. In this casePhoenixmust
carefully remove any dependency information associated
with the aborted transactions and also restorePrev(x)to it’s
earlier values. Handling aborts becomes considerably eas-
ier if all transactions are guaranteed to run at at leastread
uncommittedisolation level. We discuss these issues fur-
ther in Section??.

The choice of the granularity of a data item for which
the Prev() field is maintained affects the run-time perfor-
mance overhead and the accuracy of dependency tracking.
Coarser granularity results in lower performance overhead
but a higher probability offalse sharing, i.e., two transac-
tions that read and write different portions of the same data
item. From an implementation’s standpoint, the definition
of a data item must satisfy the following two properties:

• The read/write of a data item must be atomic so that
thePrev()field update is atomic, and

• There should be a unique way to refer to an item so
that undo can be done at the same granularity.

A table row satisfies both properties and thus is chosen
as the basic unit for tracking inter-transaction dependen-
cies. Accordingly a data item read operation is defined as
either of the following: (1) read access to a row satisfy-
ing WHERE or HAVING clause in a select operation, or
(2) read access to a row satisfying WHERE clause in up-
date/delete operation. To a given transaction, a row is read
only when the select statement returns a row or when a row
is chosen to be updated/deleted by an update/delete state-
ment. Note that this definition excludes those rows that
are readduring the processing of a select operation or a
delete/update operation. That is, if the DBMS reads a set

www.manaraa.com

OnWrite(Item x, Transaction x) {
 Set prev(x) = x;
}

OnRead (Item x, Transaction t) {
 LastToUpdate = prev(x);
 if (t does not depend on LastToUpdate)

 AddDependency (t, LastToUpdate);
}

OPERATION : r(x) / w(x) = read/write of item x

T0 : w(1) commit

T1 : r(1) r(2) commit

T2 : w(3) r(1) w(4) commit

T3 : r(3) commit

DEPENDENCIES :
T1

T2 T3

T0

Figure 1:Creating dependency graphs from transaction history. Transaction 1 becomes dependent on Transaction 0 after reading item
1 that is last updated by Transaction 0. The algorithm on the right describes how the graph on the left is created and maintained.

of rows in order to service a select query, only the rows
that satisfy the query are considered read by the transac-
tion that issues the query. Similarly a write to a table row
is defined as an update (insert) statement, which modifies
(inserts) that row.

4 Prototype Implementation

The implementation ofPhoenix adheres to the follow-
ing principles. Firstly, the addition of intrusion resilience
should be safe in the sense that it does not affect normal
transaction execution semantics even upon system failures.
Secondly, the performance and space overhead ofPhoenix
should be kept to the minimum, preferably to a level that is
completely transparent to database users. Finally, database
administrators should be able to enable/disablePhoenix
easily.

Logically, Phoenixconsists of two components: a run-
time component that builds up inter-transaction dependen-
cies during normal operation, and a repair-time component
that computes the set of corrupting transactions and per-
forms undo of their effects after an intrusion is detected.
These two components will be described in more detail in
the following subsections.

The currentPhoenixprototype is built on PostgreSQL,
an open-source database management system derived from
Berkeley’s Postgres project. We chose PostgreSQL as
the underlying platform because it is open-source, it pro-
vides industry-strength transaction support, and most im-
portantly the fact that its multi-version concurrency control
and no-overwrite storage management are a perfect fit with
Phoenix. In the next subsection, we will briefly describe
these two PostgreSQL features to set the stage for subse-
quent discussion.

4.1 Multi-Versioning Record Structure in Post-
greSQL

PostgreSQL uses a no-overwrite storage management pol-
icy to speed up the transaction processing. In this scheme,
every update to an existing table row creates a new version
of the row. Under this policy, both the before image and

after image of each database update are implicitly stored in
the database, and consequently there is no need for storing
undo information in a separate log. This essentially means
that a part of the standard write-ahead log (before images)
is implicitly stored as part of the database records. This
results in faster transaction abort handling and recovery as
there is no undo log to process.

With this database record structure, PostgreSQL
chooses to use a multi-version concurrency control
(MVCC) scheme to improve the transaction concurrency.
In MVCC, the concurrency control granularity is a table
row; a read access and a write access to the same table row
do not block each other; only a write access can block an-
other write access to the same table row.

In PostgreSQL, a table row contains one or more tuples,
each representing a distinct version of the table row. At run
time, when a transaction accesses a table row, the tuple it
actually sees depends on thevisibility rule. Each tuple of
a table row comes with a metadata that consists of three
fields: Xmincontains the ID of the transaction that creates
this tuple,Xmaxcontains the ID of the transaction that up-
dates or deletes this tuple,Link points to the next tuple of
the same table row. When a transaction with an ID ofN
accesses a table row, PostgreSQL returns the tuple of this
table row that has a valid Xmin and invalid Xmax with re-
spect toN .

In read committedisolation level, the ID in Xmin or
Xmax is valid with respect toN if and only if it is N or it
denotes a transaction that is already committed. Inserial-
izableisolation level, the ID in Xmin or Xmax is valid with
respect to N if and only if it is N or it denotes a transaction
that is already committed before TransactionN starts.

In visibility rule processing, PostgreSQL needs to know
whether a transaction is already committed and when. For
this purpose, it keeps a separate transaction status log,
each entry of which corresponds to a transaction and in-
dicates whether the transaction is in progress, committed,
or aborted. To ensure correctness, the tuples updated by a
transaction must be written to disk before its entry in the
transaction status log can be changed to “committed.”

Multiple tuples per table row combined with visibility

www.manaraa.com

rule processing result in both a powerful framework for
both concurrency control and error recovery. For example,
during recovery, to abort a previously in-progress transac-
tion, all that is needed is to convert the transaction’s corre-
sponding entry in the transaction status log to “aborted”.
Once this is done, none of the tuples it creates will be
visible to any transactions according to the visibility rule.
There is no need for any redo, because if a transaction is
considered “committed” in the transaction status log, all
the tuples it creates must be written to disk already.

From the standpoint ofPhoeniximplementation, Post-
greSQL provides two key benefits. First, theXminfield of
every tuple provides the same information asPrev(). Sec-
ond, the extremely simple way of aborting a transaction
allows Phoenixto undo a committed transaction without
making any modification to PostgreSQL’s source code.

4.2 Run-Time Logic

4.2.1 Recording Last Update Transaction

To keep track of inter-transaction dependencies at run time,
PostgreSQL needs to record the ID of the transaction that
last updates each database record. There are two ways to
implement this functionality. The first approach is tied with
PostgreSQL’s multi-versioning record structure. When a
transaction accesses a table row, PostgreSQL returns one
of the row’s tuples according to the visibility rule; theXmin
field of this tuple gives the ID of the transaction that creates
the instance of the table row that the current transaction is
accessing. The additional space usage is only 4 bytes (size
of a unique transaction ID) per row and the time cost is
that of updating this 4-byte field each time a row is written.
By exploiting the MVCC data structure inherent in Post-
greSQL, no additional code is required forPhoenixto keep
track of the last transaction that updates a given table row.

If there is no per-recordXmin field, then an alternative
approach for maintainingPrev() information is based on
triggers. More specifically, we create a system table called
CreateTranthat contains two columns : row OID and trans-
action ID. A tuple (o,x) inCreateTranindicates that the row
with OID o is last updated by a transaction with ID x. To
take control when a table row is updated, one can set up a
create/delete/update trigger for every database table. The
handler associated with a table’s trigger will be invoked
whenever a row in the table is created, deleted, or modi-
fied. Moreover, the handler can access the row in question.
Using the trigger mechanism, we can modify the transac-
tion ID field of theCreateTranentry corresponding to the
row in question to point to the current transaction. The
CreateTrantable is implemented as an in-memory hash ta-
ble with row OID as the key. On both read and write ac-
cess to a table row, the system consults with the hash ta-
ble with the row’s OID, and updates the entry or builds
up inter-transaction dependency accordingly. Because the
hash table is memory-resident, the cost to access it is much

smaller.

4.2.2 Capturing Inter-Transaction Dependency

In Phoenix, an inter-transaction dependency is constructed
whenever a transaction reads a table row that is last up-
dated by another transaction. Conceptually one can set up
a read trigger for each database table and implement this
dependency tracking logic in the associated trigger handler.
Unfortunately, unlike write triggers, most DMBSes do not
support read triggers. Even when they do, the read trigger
semantics may not be an exact fit of whatPhoenixneeds
and the associated performance overhead may be exces-
sive. As a result,Phoenixhas no choice but to modify Post-
greSQL’s internals to construct inter-transaction dependen-
cies at run time.

Ideally, Phoenixneeds to intercept the query execution
at the point when a table row satisfying the WHERE or
HAVING clause in the query is returned for further pro-
cessing. This requirement relates to our definition of read
given in section 3.2. The execution plan tree for a query
is a binary tree comprising nodes that perform certain tu-
ple producing operations. For example, an index scan node
can use a key and a BTree index to return matching rows,
a join node can merge-join the tuples produced by it’s left
and right subtrees, etc. Query execution proceeds in an
iterative manner by a parent node asking it’s child nodes
to produce a tuple for it to operate on. Each returned tu-
ple is operated upon in a node-specific manner. This pro-
cess continues until child nodes indicate that there are no
more tuples. The execution of a query plan is initiated by
the root node requesting a tuple from it’s children and ends
when the children return anull tuple. For SELECT state-
ments the root node will return the tuples it receives to the
PostgreSQL front end. For UPDATE statements, the root
node will perform the required update on the received tu-
ples. For DELETE statements, the root node will expire
the received tuples. The tuples that are operated upon by
an execution plan tree are in fact copies of the actual on-
disk tuples, instantiated at the lower levels in the plan tree.
We refer to them ascooked tuples. The data portion in
cooked tuples may change as they pass through projection
or join nodes (cooking) while the meta-data portion usually
remains the same. Not every cooked tuple present at lower
levels reaches the root node as some of them are discarded
during join operations, intersect operations etc.

In order to add a dependency,Phoenix intercepts the
query execution plan when it identifies the occurrence of
a read. At this point, it calls a hook function to add a de-
pendency between thecurrent transactionand thelast up-
date transactionfor the tuple in question, before allowing
query execution to proceed as normal. The point of inter-
ception in query execution is the code associated with pro-
cessing the root node. Intercepting at the root node suffices
as all rows returned to the root node for SELECT/UPDATE

www.manaraa.com

statements will match the WHERE (or HAVING) clauses.
Thus, we can call our dependency-adding hook function
each time the root node’s children return a tuple. How-
ever, prior to adding a dependency during interception, we
also need to obtain the row ID(s) of the tuple as they are
needed for determininglast update transaction. The row
ID information needed at the root level is maintained as
part of the cooked tuples. It is possible for a cooked tuple
to be based upon more than one original disk tuples. For
instance, if the SQL query involves a join of 5 tables, the
resulting tuple is a linear composition of some rows from
these 5 tables. Due to this we need to maintain a list of
row IDs for each cooked tuple. This list starts off as a sin-
gle element when the cooked tuple is instantiated (row ID
of disk based tuple) and will grow by one element at each
join node. As no deletions or traversal of this list (except
at the root node) are required we can maintain it with little
overhead. It should be noted that size of this row ID list is
usually quite small but such lists exist as meta-data for each
of the cooked tuples in the final result of a query. Once the
row ID information is available at the root node,Phoenix
uses thePrev() information to find out what transaction(s)
last updated the row in question and adds one or multiple
dependencies.

4.2.3 Keeping Inter-Transaction Dependency Graph
Persistent

Maintaining the inter-transaction dependency graph is a po-
tential performance bottleneck forPhoenixas one needs to
update and query the graph on each read during query ex-
ecution. Further, this graph is maintained as a shared data
structure operated upon by multiple transactions and thus
efficiency is even more critical. We exploit two properties
of the operations against the inter-transaction dependency
graph to improve its run-time efficiency. Firstly, traversal
of the graph is not required whilePhoenixis operating. It
is only during the post-intrusion phase that we need to an-
alyze the dependency graph in detail. Secondly, deletion
of edges from the graph can be carried out in an asyn-
chronous manner and even deferred to the post intrusion
phase if space is not a concern (see Section 5). This is
because deletions need to be performed only when a trans-
action aborts. We can process a transaction abort event by
simply setting a flag in the corresponding node of the graph
and taking appropriate action at analysis time.

We implement the inter-transaction dependency graph
as a hash table of hash tables. This is stored in the DBMSs
shared memory area and thus is accessible to all back-
end server processes, each of which services a SQL-based
transaction. The top-level hash table (Table-A) is indexed
by a transaction ID. Each entry in Table-A is associated
with one transaction and is a hash table itself (Table-B).
Table-A is a store of dependencies for all transactions
whereas Table-B is for dependencies associated with a par-

ticular transaction.
To record the dependency from Transaction X to Trans-

action Y, the Table-B associated with X is retrieved through
a hashed access to Table-A using X as the key. Next, Y
is added to the Table-B of Transaction X through another
hashed access to Table-B using Y as the key. To check if
Transaction X depends on Transaction Z, we retrieve the
Table-B associated with X and verify if Z is present in that
Table-B.

The part of the inter-transaction graph that describes
what a transaction depends on is made persistent when the
transaction is committed, at which time the Table-B asso-
ciated with this committed transaction is written to a disk-
based log file. This log file contains one record per trans-
action. Each record starts with three fields:TransactionID,
numberDepends, and needsUndo, and is followed bynum-
berDependstransaction IDs. TheneedsUndoflag is set if
the transaction does not consist of only read queries; trans-
actions that just read are not recorded in the write log and
do not need undo. Finally, once a transaction’s Table-B is
written to disk, the in-memory version is discarded.

4.3 Repair-Time Logic

After an intrusion is detected,Phoenix’s repair-time logic
is invoked, which consists of two phases: identification of
the undo set and erasing the effects of the transactions in
the undo set on the database.Phoenixfirst re-builds the
inter-transaction dependency graph from the persistent de-
pendency log file. Given the transactions that are identi-
fied as initiated by the attacker,Phoenixtraverses the inter-
transaction dependency graph to find all subsequent trans-
actions that directly or indirectly depend on the attacker
transaction(s). These transactions form the initial undo set.

Recognizing that the transaction dependency definition
currently supported may not be the most appropriate one,
Phoenixprovides a tool for database administrators to re-
fine the initial undo set into the final undo set. The basic
operation supported by the tool is calledDepends(T)which
returns the set of transactions depending on T.Depends(T)
is simply the result of the reachability algorithm with T
as the start node. A DBA can delete certain transactions
from the undo set, combine two undo sets, add elements
to an undo set, etc. Therefore the DBA has considerable
flexibility in finalizing the eventual undo set. The depen-
dency graph query tool allows a DBA to mix and match
his intuition and knowledge about transaction semantics
along with the automated derived undo set. This inter-
active refinement facility is essential because it provides
database administrators a sense of control and flexibility in
the database damage control process.

Assume the set of transactions that take place between
the time when an intrusion occurs and the time when it is
detected isTtotal and the final undo set isTundo. Then
logically whatPhoenixneeds to do to repair the intrusion

www.manaraa.com

damage is to rollback all transactions inTundo, and to roll
forward those transactions that are inTtotal - Tundo. The
roll-forward step is necessary because it is what distin-
guishesPhoenixfrom other backup-based damage repair
approaches: the ability to selectively undo only corrupting
transactions and thus preserve as much useful work as pos-
sible.

Owing to the visibility rule logic in PostgreSQL, abort-
ing a transaction is extremely simple: Just change the sta-
tus of the transaction in question to “aborted” and all the
tuples that this transaction creates immediately become in-
visible. With this powerful primitive, allPhoenixneeds to
do to repair the damage caused by an intrusion is to con-
vert the status of all the transactions inTundo to “aborted”
in the transaction status log. There is no need to explic-
itly roll forward transactions inTtotal - Tundo, because the
effects of these transactions will become visible automati-
cally through the visibility rule logic.

Recall that the protection window ofPhoenix is the
longest interval between an intrusion and its detection that
Phoenixcan tolerate and still provide perfect repair. Sup-
pose the protection window is set to one month. This
means that PostgreSQL needs to maintain table row ver-
sions and transactions status log entries that are younger
than a month. PostgreSQL provides a vacuum command
that can be run periodically to reclaim storage allocated to
tuples that are outdated by other committed transactions.
To ensure that tuples and transaction status log entries are
properly preserved for recovery, it is required that vacuum
should not be run during the protection window.

For other DBMSs that support standard write-ahead log-
ging, both the rollback and roll-forward steps are needed.
In rollback, one scans the write-ahead log backwards one
record at a time. If the current record belongs to a trans-
action inTundo and is not a start transaction record, it is
undone. If the record belongs to a transaction in Tundo and
is a start transaction record, the transaction is deleted from
Tundo. This process continues untilTundo becomes empty
and there are no more transactions to be undone. Next, in
roll-forward, one scans ahead through the write-ahead log
until the end of the log. If a record belongs toTundo it is
skipped. Otherwise, it is applied to the database.

5 Performance Evaluation

In this section we present the result of a performance eval-
uation study of a fully operationalPhoenixprototype. The
testbed machine for all the following experiments is a Dell
Dimension Machine with a 1.8Ghz Intel Pentium 4 CPU,
a 512K L2 cache, 1GB RAM and two 60GB hard-drives
and running Red-Hat Linux version 7.1. Our experiments
are based on the TPC-C benchmark with a warehouse fac-
tor of 8, unless specified otherwise. The TPC-C benchmark
is designed to reflect real world OLTP processing activity
and models a wholesaler business. The benchmark spec-

ifies five different types of transactions that are executed
against a populated database. Each transaction type has a
specific profile in terms of the number of reads/writes per-
formed and the frequency of execution. We implement the
TPC-C transactions in C using the libpq library provided
by PostgreSQL.

Although the currentPhoenixprototype successfully in-
corporates intrusion resilience, it is important to demon-
strate thatPhoenixdoes this without introducing undue per-
formance overhead at run time. Logically,Phoenixadds
additional code to keep track of the last update transac-
tion for each table row, to build up inter-transaction de-
pendency upon read access to a table row, and to put the
inter-transaction dependency graph to disk at transaction
commit time. To demonstrate that the run-time overhead
of Phoenixis quite reasonable, we performed two experi-
ments to evaluate its impact on transaction response time
and throughput.

In the first experiment we measure the average trans-
action response times ofPhoenixand PostgreSQL. The
database cache was warmed up initially by executing all
TPC-C transactions 10 times. The execution time of each
transaction is recorded and averaged over 100 runs. The
currentPhoenixprototype implements two ways to keep
track of inter-transaction dependencies: the MVCC ap-
proach and the Trigger approach (Section 4.2.1). The av-
erage per-transaction execution latencies of the five types
of transactions in the TPC-C benchmark with and with-
out inter-transaction dependency tracking are shown in Ta-
ble 1. The Trigger and MVCC columns correspond to the
trigger-based and the MVCC-based approach toward de-
pendency tracking, respectively, whereas the PostgreSQL
column corresponds to the case of no dependency tracking.
ThePhoenixOverhead column shows the percentage over-
head difference between the MVCC version ofPhoenixand
PostgreSQL.

The main additional performance overhead of the
MVCC approach with respect to generic PostgreSQL is
due to the construction and storage of inter-transaction de-
pendency graph upon read accesses, because PostgreSQL
already records the ID of the last update transaction for
each table row. Therefore, the performance difference be-
tween PostgreSQL and the MVCC approach should in-
crease with the number of read accesses in the transac-
tions. This explains why the execution latency differ-
ence between the MVCC approach and PostgreSQL is the
largest for Stock Level transactions, which are read-only
transactions, then Order Status, medium read-only transac-
tions, and the smallest for Payment, light read/write trans-
actions. Although New Order transactions also involve
heavy read accesses, the relative performance difference
between PostgreSQL and the MVCC approach is smaller
compared to that of Stock Level transactions, because the
writes in read/write transactions dilutes the cost of depen-
dency tracking by significantly increasing the overall trans-

www.manaraa.com

Transaction Access Trigger PostgreSQL MVCC Phoenix
Type Characteristics based (ms) (ms) (ms) Overhead

Payment Light Read/Write 179.1 128.6 129.7 0.83%
Delivery Medium Read/Write 4321 1787 1820.9 1.89%

New Order Heavy Read/Write 30123 5840.9 5970 2.21%
Order Status Medium Read Only 273 165.4 172.2 4.11%
Stock Level Heavy Read Only 589.4 217.8 228.4 4.89%

Table 1: Average execution latencies in milliseconds of different types of transactions in the TPC-C benchmark when executed
with/without inter-transaction dependency tracking added by Phoenix. The Trigger and MVCC columns correspond to the trigger-
based and the version-based approach, respectively, to dependency tracking, whereas the PostgreSQL column corresponds to the case of
no dependency tracking. The Phoenix Overhead column shows the percentage overhead difference between MVCC and PostgreSQL.

Throughput
W=4 W=8 W=16 W=32

Phoenix 911 776 735 681
PostgreSQL 993 850 793 740
Overhead 8.25% 8.7% 7.31% 8.0%

Table 2:Overall transaction throughput comparison between the
MVCC version of Phoenixand PostgreSQL under the TPC-C
benchmark in terms of number of transactions executed per sec-
ond. W is the number of warehouses.

action latency without adding any extra dependency track-
ing overhead. This is also why a four-fold increase in la-
tency from Delivery to New Order, only results in a corre-
sponding increase in overhead of 0.32%.

The latency measurements in Table 1 demonstrate that
the penalty in transaction response time thatPhoenixin-
troduced for the TPC-C benchmark is less than 5%. Ta-
ble 1 also shows that the performance difference between
the Trigger approach and the MVCC approach could be
up to a factor of five, e.g., Delivery transactions. This is
mainly due to the additional cost associated with access to
theCreateTrantable at run time.

In the next experiment we investigate howPhoenixaf-
fects the transaction throughput under the TPC-C bench-
mark. We simulated 400 simultaneous users that execute a
transaction mix consisting of45% New Order transactions,
43% Payment transactions and 4% Order Status, Deliv-
ery and Stock Level transactions. Each user submits this
transaction mix to the database server over a period of two
hours. Table 2 shows the comparison in the transaction
throughput betweenPhoenix-MVCC and PostgreSQL, in
terms of number of transactions processed in one minute,
which is the standard throughput metric for TPC-C bench-
marks. The TPC-C specification models a warehousing
business and allows scaling the database size by increas-
ing the number of warehouses (W). These scaling rules
are explicitly defined and addition of one row to the ware-
house table results in a addition of 475,000 rows across the
database.

Although the transaction throughput decreases as the
database size is increased from W=2 to W=32, the perfor-
mance overhead ofPhoenixcompared to PostgreSQL re-
mains almost the same. Overall,Phoenixincurs a through-

put penalty of around 8% for all database size when com-
pared to PostgreSQL. This is because scaling has no effect
on the number of dependencies that are being generated
over the test run. Each transaction reads the same num-
ber of rows for a database with one warehouse as for a
database with five warehouses. Thus the overhead associ-
ated with updating the dependency graph remains almost
constant. Consequently, the resulting dependency graph
has the same number of edges for all warehouse factors
but its density may vary. The marginal drop in through-
put performance can be attributed to the need to access a
common disk based log file. The shared memory-resident
dependency graphdoes notaffect the overall transaction
throughput, as no locking is required while accessing this
graph and each transaction accesses it’s own unique hash
table. Further, allocating extra buffers in the shared mem-
ory region based on an estimate of the graph size ensures
that the graph is always memory resident.

Finally, in terms of space overhead,Phoenixrequires
4 bytes for each table row to record the ID of the last
update transaction. Assuming at the average table row
size is 50 bytes, this represents an 8% overhead. In the
MVCC approach, this space overhead is 0% with respect
to PostgreSQL because PostgreSQL maintains the Xmin
field for free. The space overhead of the Trigger ap-
proach, on the other hand, is 16% because it uses a sep-
arate system table that requires an additional 4-byte row
OID field. As for the inter-transaction dependency graph,
assume that each transaction on the average adds 10 edges
to the graph, and the DBMS executes 200 transactions per
second, then the size of the inter-transaction dependency
graph is10 ∗ 100 ∗ 3600 ∗ 24 ∗ 4 = 3.456 Gbytes per day,
assuming each dependency graph edge costs 4 bytes. For
a protection window of two weeks, this translates to less
than 49 Gbytes, which can be easily accommodated by a
60-Gbyte IDE drive that costs under $150 as of July 2002.

6 Conclusion

As DBMSs become an integral component of Internet ser-
vices, they are subject to the same type of attacks that have
plagued their front-end servers. Although access control
and authentication can a large extent fend off direct attacks,

www.manaraa.com

they can do very little with respect to indirect attacks that
go through compromised Web server or application servers,
which DBMSs typically trust. Even for databases that are
not visible in the Internet, they are still vulnerable to insider
threats and other attacks that are based on non-technical
means such as social engineering. While most database se-
curity research focuses on attack prevention, we take a dif-
ferent approach by borrowing ideas from the fault-tolerant
computing community: To maximize the overall system
availability, one can either minimize MTTR or maximize
MTTF. As research on MTTF maximization starts to reach
a point of diminishing return, it is essential to investigate
the MTTR minimization approach for additional perfor-
mance gain.

This paper describes the design, implementation, and
evaluation of an intrusion-resilient database system called
Phoenix, which both facilitates the post-intrusion system
restoration process and improves the accuracy of database
damage repair. It features a novel run-time inter-transaction
dependency tracking mechanism that generates a data
structure that allowsPhoenixto quickly and automatically
identify the corrupted transaction set whose effects on the
database should be undone. To incorporate database ad-
ministrators’ inputs,Phoenixalso provides an interactive
exploration interface for them to further refine this undo
set. One the final undo set is determined,Phoenixrepairs
the database by selectively rollback the transactions in the
undo set. The currentPhoenixprototype is built on Post-
greSQL and intelligently exploits its no-overwrite storage
structure and multi-version concurrency control to mini-
mize the performance cost associated with inter-transaction
dependency tracking and selective transaction undo. Per-
formance measurements of the TPC-C benchmark on the
fully operationalPhoenixprototype show that the run-time
overhead for inter-transaction dependency tracking is less
than 5%, and the selective transaction undo is almost in-
stantaneous. With this small run-time overhead,Phoenix
can speed up the repair process by at least an order of mag-
nitude compared to manual repair. Moreover, this fast re-
pair advantage also carries over to database damages due to
incorrect input entries or operational errors.

The proposed fast database damage repair technique
closes a critical gap in the fault tolerance support of ex-
isting DBMS, in the sense that it provides a mechanism for
a DBMS to quickly recover from application or operator
errors. In contrast, existing DBMSi, even with support for
mirroring and snapshot-based backup, can only protect the
database from hardware failures and to a lesser extent soft-
ware errors in the DBMS.

References
[1] Oracle 9i Flash Back query. Oracle Technet. Available at,

http://technet.oracle.com/products/oracle9i/daily/ Aug13.html

[2] Caribou Lake, Journal Based recovery tool for Ingres. Available at,
http://www.cariboulake.com/techinfo/irepwhite paper.html

[3] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh,
Peter Schwarz. “ARIES: A Transaction Recovery Method Support-
ing Fine-Granularity Locking and Partial Rollbacks Using Write-
Ahead Logging”. TODS. 17(1): 94-162(1992)

[4] Peng Liu, Paul Ammann, Sushil Jajodia. “Rewriting histories: Re-
covering from malicious transactions”. The International Journal of
Distributed and Parallel Databases. 8(1):7-40, January 2000

[5] P. Luenam, P. Liu. “ODAM: An On-the-fly Damage Assessment
and Repair System for Commercial Database Applications”. Proc.
15th IFIP WG 11.3 Working Conference on Database and Appli-
cation Security.

[6] P. Ammann, S. Jajodia, P. Liu. “Recovering from Malicious Trans-
actions”, IEEE Trans. on Knowledge and Data Engineering. To ap-
pear.

[7] Tripathy, Sani and Panda, Brajendra. “Post-Intrusion Recovery Us-
ing Data Dependency Approach”. In Proceedings of the 2nd An-
nual IEEE Systems, Man, and Cybernetics Information Assurance
Workshop, West Point, NY.

[8] T.F. Lunt “A Survey of Intrusion Detection Techniques”. Comput-
ers & Security. 12(4):405 ? 418. June 1993

[9] D.E.Denning. “An intrusion detection model”. IEEE Trans. On
Software Engineering, SE-13:222-232. February 1987

[10] Dean Povey. “Enforcing well-formed and partially-formed trans-
actions for UNIX”. In Proceedings of the 8th USENIX Security
Symposium. USENIX Association, August 1999.

[11] Dean Povey. “Optimistic security: A new access control
paradigm”. In Proceedings of the 1999 New Security Paradigms
Workshop, September 1999.

[12] D. S. S et al. “Deciding when to forget in the Elephant File System”
In Proceedings of the Seventeenth ACM Symposium on Operating
System Principles, pages 110-123, 2002.

[13] J.D.S et al. “Self Securing storage: Protecting data in compromised
systems”. In Proceedings of the 2000 OSDI Conference, October
2000.

[14] Ningning Zhu, Tzi-cker Chiueh, “Design, Implementation, and
Evaluation of Repairable File Service,” in Proceedings of Interna-
tional Conference on Dependable Systems and Networks,San Fran-
cisco, CA, June 22nd - 25th, 2003.

[15] J.W et al. “Survivable Information storage systems”. IEEE Com-
puter, 2(1):61-68, August 2000.

[16] S. Quinlan and S. Dorward. “Venti: a new approach to archival
storage”. In USENIX conference on File and Storage Technologies,
January 2002

[17] Home of the “tripwire open source project”.
http://www.tripwire.org/.

[18] David Patterson et al. “Recovery Oriented Computing ROC: Moti-
vation, Definition, Techniques, and Case Studies”, UC Berkeley
Computer Science technical report, UCB//CSD-02-1175, March
2002.

[19] A. Brown and D. A. Patterson. “Embracing Failiure: A case for
recovery-oriented computing (roc)”. In 2001 High Performance
Transaction Processing Symposium, October 2001.

[20] Kifer, Lewis, Bernstein.Databases and Transaction Processing :
An application oriented approach. Addison-Wesley. 2002

[21] Philip Bohannon, Rajeev Rastogi, S. Seshadri, Avi Silberschatz,
S. Sudarshan, “Using Codewords to Protect Database Data from a
Class of Software Errors,” ICDE, p 276-285, 1999.

[22] CERT Coordination Center, “CERT Advisory CA-2003-04 MS-
SQL Server Worm,” http://www.cert.org/advisories/CA-2003-
04.html

